Stand - a HDRelationshipStand-derived classTree - a HDRelationshipTree-derived classpublic abstract class HDRelationshipPredictor<Stand extends HDRelationshipStand,Tree extends HDRelationshipTree> extends REpiceaPredictor implements HeightPredictor<Stand,Tree>
| Modifier and Type | Class and Description |
|---|---|
protected static class |
HDRelationshipPredictor.GaussianErrorTermForHeight |
protected static class |
HDRelationshipPredictor.RegressionElements |
REpiceaPredictor.CruiseLine, REpiceaPredictor.ErrorTermGroup, REpiceaPredictor.IntervalNestedInPlotDefinition| Modifier and Type | Field and Description |
|---|---|
protected java.util.Map<java.lang.String,java.lang.Double> |
observedHeights |
DefaultZeroIndex, isRandomEffectsVariabilityEnabled, isResidualVariabilityEnabled, listeners, oXVectorisParametersVariabilityEnabled| Modifier | Constructor and Description |
|---|---|
protected |
HDRelationshipPredictor(boolean isVariabilityEnabledEnabled)
Preferred constructor.
|
protected |
HDRelationshipPredictor(boolean isParameterVariabilityEnabled,
boolean isRandomEffectVariabilityEnabled,
boolean isResidualErrorVariabilityEnabled)
Second constructor for greater flexibility
|
| Modifier and Type | Method and Description |
|---|---|
protected double |
blupImplementation(Stand stand,
HDRelationshipPredictor.RegressionElements regElement)
This method accounts for the random effects in the predictions if the random effect variability is enabled.
|
protected abstract HDRelationshipPredictor.RegressionElements |
fixedEffectsPrediction(Stand stand,
Tree t,
Matrix beta)
This method computes the fixed effect prediction and put the prediction, the Z vector,
and the species name into m_oRegressionOutput member.
|
protected java.lang.Enum<?> |
getErrorGroup(Tree tree) |
protected abstract java.util.Collection<Tree> |
getTreesFromStand(Stand stand)
This method selects the trees from which the blups must be calculated.
|
double |
predictHeightM(Stand stand,
Tree tree)
Predicts the height for individual trees and also implements the Monte Carlo simulation automatically.
|
protected void |
predictHeightRandomEffects(Stand stand)
This method computes the best linear unbiased predictors of the random effects
|
protected double |
residualImplementation(Tree tree,
double predictedHeightWithoutResidual)
This method accounts for a random deviate if the residual variability is enabled.
|
protected void |
setSpecificResiduals(Tree tree,
GaussianErrorTerm errorTerm)
This method records a normalized residuals into the simulatedResidualError member which is
located in the ModelBasedSimulator class.
|
protected boolean |
wasThisTreeInitiallyMeasured(Tree tree) |
addModelBasedSimulatorListener, doBlupsExistForThisSubject, doesThisSubjectHaveResidualErrorTerm, doRandomDeviatesExistForThisSubject, fireModelBasedSimulatorEvent, fireRandomEffectDeviateGeneratedEvent, getBlupsForThisSubject, getCruiseLineForThisSubject, getDefaultRandomEffects, getDefaultRandomEffects, getDefaultResidualError, getGaussianErrorTerms, getIntervalNestedInPlotDefinition, getParametersForThisRealization, getRandomEffectsForThisSubject, getResidualError, getResidualErrorForThisSubject, getSubjectPlusMonteCarloSpecificId, getSubjectPlusMonteCarloSpecificId, hasSubjectBeenTestedForBlups, init, recordSubjectTestedForBlups, removeModelBasedSimulatorListener, setBlupsForThisSubject, setDefaultRandomEffects, setDefaultResidualError, setDeviatesForRandomEffectsOfThisSubject, setParameterEstimates, simulateDeviatesForRandomEffectsOfThisSubjectgetParameterEstimatesprotected final java.util.Map<java.lang.String,java.lang.Double> observedHeights
protected HDRelationshipPredictor(boolean isVariabilityEnabledEnabled)
isVariabilityEnabledEnabled - enables the variability in the parameter estimates, the random effects and the
residual errors at the same timeprotected HDRelationshipPredictor(boolean isParameterVariabilityEnabled,
boolean isRandomEffectVariabilityEnabled,
boolean isResidualErrorVariabilityEnabled)
isParameterVariabilityEnabled - enables the variability in the parameter estimatesisRandomEffectVariabilityEnabled - enables the variability in the random effectsisResidualErrorVariabilityEnabled - enables the variability in the residual errorspublic double predictHeightM(Stand stand, Tree tree)
HeightPredictorpredictHeightM in interface HeightPredictor<Stand extends HDRelationshipStand,Tree extends HDRelationshipTree>stand - a HDRelationshipStand-derived instancetree - a HDRelationshipTree-derived instanceprotected double blupImplementation(Stand stand, HDRelationshipPredictor.RegressionElements regElement)
stand - a Stand objectregElement - a RegressionElements objectprotected final void setSpecificResiduals(Tree tree, GaussianErrorTerm errorTerm)
tree - a MonteCarloSimulationCompliantObject instance which stands for the treeerrorTerm - a GaussianErrorTerm instanceprotected double residualImplementation(Tree tree, double predictedHeightWithoutResidual)
tree - a HDRelationshipTree instanceprotected final boolean wasThisTreeInitiallyMeasured(Tree tree)
protected void predictHeightRandomEffects(Stand stand)
stand - a HeightableStand instanceprotected java.lang.Enum<?> getErrorGroup(Tree tree)
protected abstract java.util.Collection<Tree> getTreesFromStand(Stand stand)
stand - a Stand instanceprotected abstract HDRelationshipPredictor.RegressionElements fixedEffectsPrediction(Stand stand, Tree t, Matrix beta)
stand - a Stand instancet - a Tree instancebeta - a Matrix that contains the parameters