public class StudentTDistribution extends java.lang.Object implements Distribution
Distribution.Type
Constructor and Description |
---|
StudentTDistribution(int degreesOfFreedom)
Constructor for a standard Student's distribution, i.e.
|
StudentTDistribution(Matrix mu,
Matrix variance,
int degreesOfFreedom)
This constructor creates a Student't distribution with mean mu and variance sigma2.
|
Modifier and Type | Method and Description |
---|---|
Matrix |
getMean()
This method returns the first central moment, i.e.
|
Matrix |
getRandomRealization()
This method draws a random realization from the distribution.
|
Matrix |
getStandardDeviation()
This method returns the lower triangle of the Cholesky decomposition of the variance-covariance matrix.
|
Distribution.Type |
getType()
This method returns the type of the distribution.
|
Matrix |
getVariance()
This method returns the second central moment, i.e.
|
boolean |
isMultivariate()
This method returns true if the GaussianFunction instance is multivariate.
|
boolean |
isParametric()
This method returns true if the distribution is parametric or false otherwise.
|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
isUnivariate
public StudentTDistribution(Matrix mu, Matrix variance, int degreesOfFreedom)
mu
- the mean of the functionvariance
- the variance of the distributiondegreesOfFreedom
- the degrees of freedom of the distributionpublic StudentTDistribution(int degreesOfFreedom)
degreesOfFreedom
- public boolean isMultivariate()
Distribution
isMultivariate
in interface Distribution
public Matrix getRandomRealization()
Distribution
getRandomRealization
in interface Distribution
public Matrix getStandardDeviation()
public Matrix getMean()
CentralMomentsGettable
getMean
in interface CentralMomentsGettable
public Matrix getVariance()
CentralMomentsGettable
getVariance
in interface CentralMomentsGettable
public Distribution.Type getType()
Distribution
getType
in interface Distribution
public boolean isParametric()
Distribution
isParametric
in interface Distribution