public class LaplacianApproximation extends AdaptativeGaussHermiteQuadrature
GaussQuadrature.NumberOfPointsrescalingFactors, weights, xValues| Constructor and Description |
|---|
LaplacianApproximation()
Constructor.
|
| Modifier and Type | Method and Description |
|---|---|
double |
getIntegralApproximation(AbstractMathematicalFunction functionToEvaluate,
java.util.List<java.lang.Integer> parameterIndices,
Matrix lowerCholeskyTriangle)
This method returns the value of a multi-dimension integral
|
java.util.List<java.lang.Double> |
getWeights()
This method returns the weights associated to the numerical integration.
|
java.util.List<java.lang.Double> |
getXValues()
This method returns the x values for the numerical integration.
|
getOneDimensionIntegralgetMultiDimensionIntegral, getRescalingFactorsgetOrderedNodesgetLowerBound, getUpperBound, setLowerBound, setUpperBound, setXValuesFromListOfPointspublic java.util.List<java.lang.Double> getWeights()
NumericalIntegrationMethodgetWeights in class GaussHermiteQuadraturepublic java.util.List<java.lang.Double> getXValues()
NumericalIntegrationMethodgetXValues in class GaussHermiteQuadraturepublic double getIntegralApproximation(AbstractMathematicalFunction functionToEvaluate, java.util.List<java.lang.Integer> parameterIndices, Matrix lowerCholeskyTriangle)
getIntegralApproximation in class AdaptativeGaussHermiteQuadraturefunctionToEvaluate - an EvaluableFunction instance that returns DoubleparameterIndices - the indices of the parameters over which the integration is madelowerCholeskyTriangle - the lower triangle of the Cholesky factorization of the variance-covariance matrix